
Craze growth mechanics

R. Marissen

DSM Research, Polymeric Construction Materials, P.O. Box 18, 6160 MD Geleen, The Netherlands
Delft University of Technology, Delft, The Netherlands

Received 3 August 1998; received in revised form 13 January 1999; accepted 5 March 1999

Abstract

Crazing is an important fracture mechanism in polymers. In this paper, crazes are treated as cracks bridged by fibrils. Fibril stresses are
treated as external loads on the crack flanks. This perception of a craze allows an analysis in terms of linear elastic fracture mechanics. A
“Paris law” type of crack growth behaviour is adopted and the two constants for the Paris equation are estimated. The results of the approach
explain experimental results from the literature, including the well-known empirical logarithmic craze growth equation. The model predic-
tion compares favourably with craze growth data, obtained by Wales on PVC.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Crazes often represent the first stage of the fracture
process in polymers. Crazes may initiate, grow into a real
crack and eventually cause catastrophic fracture of the
polymer, or they may, after their initiation and growth,
slow down and finally arrest. An arrested craze may quite
well be acceptable from a structural point of view. However,
it still remains necessary to consider craze growth dynamics
since it allows a prediction to be made, as to whether a craze
will grow into a dangerous condition, or whether it will
arrest under a given loading situation.

Craze growth studies have been published by many
authors [1–25]. In these studies, many relevant observations
have been reported and described mathematically. An
example of such a mathematical description is the so-called
logarithmic craze growth law for crazes, growing under
long time constant stress conditions, as e.g. presented by
Wales [1] and by Verheulpen and Bauwens [2]:

a� b ln�t=ti� for t . ti : �1�
In this equation,a is the craze length at timet, t is the
loading time,ti is the initiation time andb is the constant
logarithmic growth rate (using a logarithmic time scale). Eq.
(1) is valuable because it fits the craze growth behaviour of
many glassy polymers under various loading conditions.
However, a mechanistic explanation for Eq. (1) is lacking.

A craze is a rather complex feature. Fig. 1 shows a sche-
matic representation of a craze, which has developed from a
defect. The defect is assumed to be present in the polymer as

produced, and may be associated with impurities. The exact
nature of the defect is of no importance in the context of the
present study. The craze is presented as a crack, partly
bridged by fibrils, which extend between the crack flanks.
The assumed initial defect is obviously not bridged. Rupture
of the fibrils may also be a cause for the absence of bridging.
Four individual and distinct damage processes at different
locations along the craze can be identified:

1. The pure craze tip. This is the location where longitudinal
craze growth takes place.

2. The fibrils, highly oriented polymer, experiencing a large
true stress. This stress may promote fibril elongation due
to creep.

3. The drawing zone, where fibrils are drawn from the bulk
polymer.

4. The tip of the true crack, i.e. the site where the fibrils
most remote from the tip may break. In this study, the
true crack size corresponds to the size of the initial defect
only, since fibril fracture is assumed to be absent. Never-
theless, the model is valid irrespective of the cause for
non-bridging.

The area where fibril rupture occurs, has been studied by
Brown [3]. He derived a mathematical description of the
local fibril peak stress near the true crack tip, and subse-
quently draws conclusions on fibril breakage and the
polymer fracture energy. He demonstrates the importance
of the cross-tie fibrils. However, his elaborations do not take
into account the other three damage processes. Consequently,
the description is not complete and is not a suitable example
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for the prediction of craze growth rates. In more recent
papers by Hui et al. [4], and Sha et al. [5,6], more detailed
and accurate solutions are derived. However, the focus is
still on fibril rupture only. Kramer and others devoted many
studies to the drawing zone, [7,8]. Creep elongation of the
fibrils has also been studied. Ward studied the creep beha-
viour of stretched polymers. This behaviour has been related
to craze fibril creep. Some of such related publications are
[9,10]. The pure craze tip has hardly been studied in detail in
an isolated way, as far as known to the present author. A
mechanistic study has been presented by Donald et al. [11].
However, practical tools for the prediction of craze growth
rates were again not given. In the present study, and in
contrast (and addition) to the previous work summarised
above, the craze tip is considered to be the dominating loca-
tion. The other damage areas and processes are incorporated
in the present model, but only to the extent that they influ-
ence the local loading state at the craze tip. The results of the
present model will be compared to experimental craze
growth studies performed on PVC by Wales [1].

2. Fracture mechanics modelling

A craze may be considered as a crack, loaded by a remote,
externally applied stress and by a stress acting on the crack
flanks due to the presence of stretched craze fibrils. This
perception of a craze allows an analysis of craze dynamics
in terms of conventional fracture mechanics, where the
crack flank stresses may be treated as external loads. A
simple two-dimensional (2-D) analogue of this perception

of a craze is outlined in Fig. 2. This approach allows to
describe the highly complex loading state at the crack tip
with one parameter only: the stress intensity factorK! K is,
in general, a unique crack tip loading parameter. In the
present context, it is a unique craze tip loading parameter.
Moreover, the model does not need an assumption with
respect to the mechanical properties of the crazed material,
such as the assumed ideal elastic–plastic craze behaviour in
the Dugdale model [9]. The solution forK, including the
effect of the average crack flank stress (total fibril force
divided by crack flank area) caused by the fibrils, for this
2-D case can be found in standard text books, in Ref. [26]. It
is given by the following equation:

K � S
�������pa�p

2 2Sbr

��������a=p�p
arccos�s=a�: �2�

In this equation,K is the stress intensity factor, including
the effect of the craze fibrils,a is half the craze length,s is
half the length of the non-bridged area,S is the applied
external stress, andSbr is the average (smeared out) fibril
stress on the crack flanks. The non-bridged areas may be
due to the fibril breakage during growth of the “true crack”.
However, in the following it will be considered to be half
the extension of the initial defect from which the craze
initiated. Fibrils are not present within the initial defect,
due to the very nature of a defect.

Eq. (2) has been applied successfully by the present
author [27–29] in predicting crack growth of ARALLw
laminates, with cracks in aluminium sheet material, bridged
by non-broken aramid fibres. These laminates also
comprised a non-bridged area, e.g. a bore hole or a saw
cut was present as an initial defect.

The stress intensity factorK is a unique loading parameter
for a crack tip and, provided that the fibril stresses are
accounted for, also for a craze tip, if the conditions for
applicability of linear elastic fracture mechanics are
fulfilled. Fibril stresses are accounted for in the stress inten-
sity factorK by the presence of the arccos-term in Eq. (2).
The applicability condition of linear elastic fracture
mechanics requires small scale yielding at the crack tip,
e.g. the dimensions of the yielding zone must be much
smaller than the crack length and the length of the remaining
ligament. For a pure and uniformly applied tensile stress,
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Fig. 1. Schematic representation of a craze, developed from a defect. The craze is envisaged as a crack, bridged by fibrils, except at the location of theinitial
defect.

Fig. 2. Loading system for a craze, modelled as a partly bridged crack.



small scale yielding may be checked with a crude rule of
thumb: small scale yielding is present, if the applied stress is
smaller than 0.6 times the polymer yield stress, andK may
be applied without any modification. If the stress is larger,
but does not exceed 0.8 times the yield stress, the use ofK
becomes inaccurate, but may remain applicable qualita-
tively. Eventually a plastic zone size correction like Irwins
correction [30] may be applied for better accuracy. Crazes
in polymers may occur within the region requiring a plastic
zone correction for accurate results, but in practice condi-
tions the applied stress will usually be below 0.6 times the
yield stress. However, even if such a correction is not
applied at higher stress levels, the results remain valid in a
qualitative way. A plastic zone correction will not be
applied in this paper, for reasons of mathematical simpli-
city, though there is no fundamental difficulty to include it in
the model. Moreover, the following sections show that the
absence of such a correction does not obstruct an illustrative
description of craze growth behaviour. It should be noted in
the present context, that plasticity means “irreversible” non-
linear deformation. The crazing process itself is often
considered as a plasticity mechanism. Here, all relevant
effects of the craze (fibril stresses) are explicitly considered,
e.g. by the arccos term in Eq. (2), so non-linear material
behaviour due to crazing is excluded from small scale yield-
ing and stress intensity validity considerations.

The stress intensity factorK is a linear elastic concept.
Polymers are generally considered to exhibit visco-elastic
behaviour. Nevertheless, as long as the polymer shows
linear visco-elastic behaviour, the stress intensity factorK
can still be applied in a rigorous way. This can be under-
stood from the fact that Young’s modulus does not even
appear in the crack tip stress field equations related to the
stress intensity factorK. Hence time dependency of Young’s
modulus does not occur either and linearity is important
only. A good introduction to the basics of fracture
mechanics is presented by Tada et al. [26], or by Broek [31].

Eq. (2) describes a 2-D craze situation. However actual
crazes occur in a three dimensional (3-D) environment. A
model situation much closer to the reality of a craze, is a
circular craze, initiated from a circular (spherical) defect in
a large solid under tensile stress. This situation is outlined in
Fig. 3.

The stress intensity factorK for Fig. 3 can also be found

in standard text books, e.g. Tada’s book [26], and is given
by Eq. (3):

K � 2S

����
a
p

r
2 2Sbr

�����������������������
a
p

� �
1 2

s
a

� �2� �s
: �3�

In the remainder of this paper, the 3-D situation,
described by Eq. (3) will be considered. The stress intensity
factorK quantifies the loading state at the craze tip. Conse-
quently, the craze growth rate can be described as a function
of K only. The relation must be of a type as observed for true
cracks, because the effect of the craze fibrils is already
accounted for by the right-hand side of Eq. (3). Publications
describing the creep (true) crack growth rate in polymers as
a function ofK are rather rare. Only some publications are
found in Refs. [32–39]. These investigations are almost
completely devoted to PE and PMMA. They indicate that
the material behaviour can be fitted with a Paris [40] type
equation, over a large range ofK and da=dt values:

da
dt
� CKn

: �4�

Here da=dt is the (true) crack growth rate on a linear scale,
unlike b in Eq. (1), which is defined on a logarithmic time
scale, which makes craze growth according to Eq. (1) actu-
ally time dependent.C andn are material properties, which
depend on temperature, but not on stress. A Paris type equa-
tion for the sub-critical crack growth rate, as a function of a
fracture mechanics loading parameter has been found for
many materials, metals [40], polymers [32–39], and cera-
mics [41] under various types of loads. Of course,C andn
are dependent on the type of load (static or fatigue), the
temperature, environment and material. Fett [41] related
Eq. (4) for creep rupture of ceramics to the Lennard–
Jones potential of the covalent bonds in ceramics. For poly-
mers, the potential of weak inter-chain bonds would be the
relevant potential. The small value of the inter-chain poten-
tial would explain the observed strong dependency of, espe-
cially, C on the temperature [37], and on the eventual
presence of solvents, like benzene vapour in a number of
experiments described by Wales [1]. The choice for the
weak interaction inter-chain potential would also be consis-
tent with the meniscus like micro-morphology at the craze
tip, as proposed by Donald et al. [11]. Further elaborations
on the physical background of Eq. (4) are interesting, but
beyond the scope of this paper.

Substitution of Eq. (4) in Eq. (3) gives:

da
dt
� C 2S

����
a
p

r
2 2Sbr

�������
a
p

� �s
1 2

s
a

� �2� �" #n

: �5�

Integration of Eq. (5) with appropriate boundary conditions
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Fig. 3. Schematic illustration of a circular craze, starting from a circular
defect, modelled as a partly bridged crack.



directly after the onset of craze growth yields:

a� s1 C
Zt

ti
2S

����
a
p

r
2 2Sbr

�������
a
p

� �s
1 2

s
a

� �2� �" #n

dt; �6�

whereti is the time for craze initiation (t . ti).

3. Determination of model parameters

The model given above contains four parameters, which
have not unambiguously been determined as yet:

1. the size of the initial defects;
2. the fibril bridging stressSbr;
3. the material constantsC andn;
4. the initiation time.

The size of the initial defects can in principle be
measured, using a microscope. Several published fracture
surfaces [12,15,16,19], and numerous personal unpublished
observations suggest that initial defects with a size of
around 50mm are common in polymers. However, not all
authors mention the defects explicitly. An average order of
magnitude of about 50mm will be adopted here. Further, the
defect sizes will be treated as a variable in the following
considerations. It will also be assumed that this is the only
area without fibril bridging. The situation after first fibril
fracture (increase ofs) will consequently not be addressed
in this study.

Measuring the fibril bridging stressSbr is difficult. Never-
theless, substantial experimental information is available.
Several publications [4–6,18] refer it to a fibril drawing
stress. Consequently, the smeared out average bridging
stress in a craze is assumed to be about equal to the drawing
stress during necking in a tensile specimen. Indeed, “fibrils
necking from the bulk” is a plausible scenario and might
therefore be adopted. Riemslag [17] attempted to measure
the fibril stresses at a tip craze more or less directly. His
results confirm the drawing stress scenario for relatively
short tip crazes. However, for crazes substantially longer
than the size of the initial defect, and bridging stresses larger
than the applied stress, the physically impossible situation
arises that the force transfer along the craze flanks becomes

larger than the remote force transfer. This of course violates
force equilibrium. Consequently, the smeared out bridging
stress for long crazes must be lower than the drawing stress.
The only solution is to conclude that the drawing stress
occurs only at a small region behind the craze tip, where
active fibril drawing occurs. The bridging stress at a larger
distance will be slightly lower than the tensile stressS. This
is consistent with the results obtained on ARALLw

laminates [27–29], mentioned before, in the case that the
bridging fibres (here fibrils) have a rather high stiffness. A
further argument to motivate thatSbr is about equal toS, is
presented below.

For an unbridged crack, the crack opening displacement
at the crack centre COD is known from continuum
mechanics:

COD� 4Sa
E

; �7�

whereE is Young’s modulus andS and a are defined as
above. The same equation is valid for a crack opening stress
on the crack flanks (see Fig. 4). Superposition and sign
reversal yields the COD for a bridged crack (denoted as
CODbr) and a crack closing stress on the crack flanks (and
s! a):

CODbr � 4a�S2 Sbr�
E

: �8�

Combination of Eqs. (7) and (8) yields:

Sbr

S
� 2

CODbr

COD

� �
: �9�

A rough estimation, based on typical values for a polymer
such as PVC, as applied by Wales [1], namely a craze length
of 0.3 mm, a Young’s modulus of 1.5 GPa (short term
measurement, long term value may be even lower), and a
tensile strength of 30 MPa, yields a COD of 0.025 mm. The
thickness CODbr of crazes observed in reality is much smal-
ler. A fracture mechanics estimation by Breen [21] yields a
critical opening between 0.003 and 0.0125 mm. Actual
crazes in the long term are non-critical and, consequently,
are even thinner. A micrograph of a long term craze,
presented by Breen et al. (Fig. 2 of Ref. [22]) allows a
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Fig. 4. COD equivalence for external and crack flank stresses.



rough estimation by measurement. A craze thickness of
about 0.003 mm, or even smaller is observed. Other
published micrographs [23] on long crazes also indicate
an extremely small thickness. Consequently, it must be
concluded that in accordance with Eq. (9),Sbr < S with a
quite reasonable accuracy! Actually, equatingSbr < Sover
the entire craze length except for the distance crossed by the
initial defect is a schematic stress distribution which is quite
similar to distributions presented elsewhere [7,13–15].
Obviously, fibril drawing and the associated relatively
high drawing stress in these fibrils, remains limited to the
region closely behind the craze tip. Consequently, long
crazes show a large area of more or less “inactive” static
fibrils, bridging the craze flanks.

AdoptingSbr � Ssimplifies the previous Eqs. (3), (5) and
(6) to:

K � 2S

����
a
p

r
1 2

s
a

� �2� �
�with a $ s�; �10�

da
dt
� C 2S

����
a
p

r
1 2

�������������
1 2

s
a

� �2
s8<:

9=;
24 35n

; �11�

a� s1 C
Zt

ti
2S

����
a
p

r
1 2

��������
s
a

� �2
s8<:

9=;
24 35n

dt: �12�

The material constantsC andn can be obtained by fitting
to true crack growth experiments in, ideally, uncrazed
polymers. Unfortunately, the experiments reported in the
literature were obtained on cracks which probably contained
a tip craze, thereby including some bridging already. Never-
theless, if the tip craze is small compared to the total crack
length,C andn can be estimated with reasonable accuracy.
This also means that the so-called threshold region at low
stress intensity factors (and therefore long tip crazes) should
not be considered for determiningC andn.

Only a limited amount of publications exist, which
explicitly deal with true crack growth experiments, suitable
for obtainingC andn for creep crack growth in polymers
[32–39]. Moreover, almost all reported experiments were
performed on PE or PMMA. Stern and Stern et al. [32–34]
present rather detailed data for these polymers. Those
results indicate values ofn < 2.2 for PE andn < 2.5 for
PMMA. These values were obtained by fitting the data
with Eq. (4), but excluding all data being within the thresh-
old range as indicated above, as well as the range of large
stress intensities where the critical value for the unstable
growth is approached.

The model results will later be compared with craze
growth results obtained by Wales on PVC [1]. Since PVC
and PMMA are both amorphous polymers and therefore
more similar than PVC and PE, then-value, n < 2.5,
obtained for PMMA will be adopted as a model constant.
The difference betweenn < 2.2 and n < 2.5 is small
anyhow.

The constantC for PMMA can also be obtained from the
data of Stern [32–34]. A value ofC� 2 × 1024 is obtained.
Again the difference with PE is not large. (Note dimensions
taken forK and da=dt are MPa m1/2 and in mm/s, respect-
ively). The dimension ofC is dependent on the value ofn. A
physical discussion of this peculiarity of Eq. (4) is beyond
the scope of this paper. The Paris equation is treated here as
a fit. Depending on the testing conditions, the constantsC
andn can vary with polymer type, temperature and environ-
mental conditions. In later model predictions therefore, the
constantsC and n will be varied, to study their effect on
craze growth predictions.

The initiation time does not directly result from a parti-
cular growth law. From the experiments by Wales [1], it can
be inferred that the initiation time is often quite small
compared to the time elapsing during craze growth. Many
material failure initiation times can be fitted with a
Manson–Coffin type equation [42,43]. A modified
Manson–Coffin type equation will be postulated here as a
fit, and has the form:

ti � DS2m
; �13�

whereti is the craze initiation time andD andmare material
properties.0. Eq. (13) with a positive value for the para-
meter m, reflects the fact that the initiation time will be
shorter for higher applied stress levelsS. It shows some
similarity to an equation presented by Lang et al. [33]. It
might be that the physical processes of growth and initiation
are related. A pure relation (identical physical processes,
only different in length-scale) would imply thatm� n. An
estimation from Fig. 2 in the publication by Breen and van
Dijk, for craze initiation in PVC loaded in air [24], yields a
value ofm� 11. This value is quite different from the value
for n (n� 2.5) adopted before. This suggests that the physi-
cal processes of initiation and growth of crazes are probably
rather different. However, explanations for a possible differ-
ence are beyond the scope of this paper. From the data by
Breen and van Dijk [24], the empirical fitting parameterD is
found to be aboutD� 8 × 1020 (dimensions for stress and
time are MegaPascal and second, respectively. The dimen-
sion of D shows a similar peculiarity as mentioned before
for C. This will not be discussed here). This value provides a
quite good fit to the average data for initiation in air. The
figure in Ref. [24] showing the initiation data contains a
considerable scatter. The size of the initial defect may be
expected to influence the initiation time, scatter in size of
the defects could explain the data scatter. However, a defect
size effect on the craze initiation is not incorporated in Eq.
(13), because no indications could be found regarding the
magnitude of the effect. Anyhow, since the initiation time is
typically much shorter than the craze growth period (note
the logarithmic time axes in Ref. [1]), a high accuracy is
actually not required for Eq. (13). Moreover, initiation is not
the main subject of the present study. Its influence becomes
manifest only by the usual choice of a logarithmic time scale
in the available experimental data. Some consequences of
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the logarithmic time scale will be discussed later in more
detail.

4. Some calculations

The behaviour of the model forK, as given by Eq. (3), has
been studied systematically, by varying the ratio ofSbr/Sand
by varying the sizesof the initial defect and the craze length
a. The results are presented in Figs. 5–8. The figures have
been normalised by setting the applied stress levelS� 1.
The dimensions in Figs. 5–8 are arbitrary.

The most realistic scenarioSbr < S is presented in Fig. 5.
The figure also shows the stress intensity factor for an
unbridged craze (true crack), for which of courses� a.
From the curves it is apparent that:

• Crack bridging is highly effective in reducing the stress
intensity factor at the craze tip.

• The stress intensity factor decreases with increasing
craze length. Consequently the craze growth rate is
expected to decrease (on a linear scale)!

• The size of the initial defect remains important for the
stress intensity factor (and thus craze growth rate) during
the entire craze growth life (Figs. 5 and 7), except when
Sbr , S (Fig. 6).

Fig. 6 shows the situation for an average bridging stress
being slightly lower than the external stress. Bridging is still
extremely effective. However, it can be seen that after an
initial decrease, the stress intensity factor increases again at
large craze lengths. The effect of the size of the initial defect
disappears now, if the craze is several times larger than the
defect.

Fig. 7 shows a situation for an average bridging stress
being slightly larger than the external stress. Now the stress
intensity will become zero after some craze growth, and the
craze is expected to stop growing.

The stress intensity factors as displayed in Fig. 5, can be
used to predict craze growth rates according to Eq. (4). Fig.
5 displays what is also evident from Eq. (10), The stress
intensity factor decreases continuously during further craze
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Fig. 5. Illustration of the effect of fibril bridging on the stress intensity factor
K, Normalised toS� 1, forSbr� S, and for two values of the initial defect s.
(Note that the curves fors� 0.1 ands� 0.2 do not start ata� 0, but at
a� 0.1 anda� 0.2, respectively.)

Fig. 6. Illustration of the effect of fibril bridging on the stress intensity factor
K, Normalised toS� 1, for Sbr� 0.9S, and for two values of the initial
defects. (Note that the curves fors� 0.1 ands� 0.2 do not start ata� 0,
but ata� 0.1 anda� 0.2, respectively.)

Fig. 7. Illustration of the effect of fibril bridging on the stress intensity factor
K, Normalised toS� 1, for Sbr� 1.1S, and for two values of the initial
defects. (Note that a crack (craze) is closed for a calculated valueK , 0.
The physical result should than be interpreted asK� 0.)

Fig. 8. Predicted craze growth rate as a function of craze length for two
values of the initial defect.



growth, but it never does reach zero. Its value remains posi-
tive, and the size of the initial defect remains important
during the entire craze growth life (the last statement is
not visible anymore in Fig. 5, but is clear from Eq. (10)).

Fig. 8 displays the craze growth rate (note, logarithmic
scale) as a function of the craze length, calculated according
to Eq. (4) and the constantsC andn found for PMMA, for
the case whereSbr� S. Two values of the initial defect sizes
are assumed: 60mm (0.06 mm) and 90mm.

It is easily observed from Fig. 8 that the size of the initial
defect remains important, also for craze lengths much larger
than the initial defect length. This is typical for a bridged
crack situation; i.e. for a craze. Pure cracks “forget” the
effect of the initial defect rapidly. It can also be seen in
Fig. 8 that the craze growth rate decreases continuously
with increasing craze length. This seems to be in contrast
with the constant logarithmic craze growth rate law as
presented in Eq. (1). This apparent contrast is discussed
below.

A numerical integration of Eq. (12), with the constants
derived before, yields the craze length as a function of time.
In the Figs. 9 and 10, the model prediction is compared to
experimental data from Wales [1], taken from Fig. 4 in Ref.
[1]. A logarithmic time scale has been used as in Ref. [1].

The procedure was as follows: Wales presents two data
series, for craze growth at stress levels of 32.3 and
42 MPa. For both stress levels, the model value for the
initial defect is chosen equal to the craze length of the
first data point of the respective data series. This presup-
poses that Wales observed the crazes shortly after their
initiation, when craze growth was still small. The result is
that two values for the initial defect sizes are presented in
Fig. 9: 0.06 and 0.09 mm. The initiation parameterD was
fitted in such a way that the craze initiation time in the
model coincides with first experimental data point (similar
choice as for the defect size). This variation of the initiation
parameterD from the earlier obtained valueD� 8 × 1020

was well within the range of experimental scatter observed
in Ref. [24]. After equalising the initiation conditions to
those of the experiments, the craze growth was modelled
entirely with the craze growth equations discussed above
and the growth characteristics obtained for PMMA as
discussed before. The same procedure was followed for
Fig. 10.

The model data in Fig. 9 agree quite well with the experi-
mental results of Wales, indicating the validity of the
present model. The agreement in Fig. 10 is only moderate.
However, the stress of 42 MPa is close to the polymer yield
stress. Wales even reported necking at 3× 105 s. The valid-
ity limits of fracture mechanics is discussed at the beginning
of this paper. Necking means that the yield stress is
surpassed, so the rough validity criteria, a stress smaller
than 0.6 times the yield stress, or 0.8 times if a correction
for plasticity is applied, are both violated. Considering this
violation, the moderate and only qualitative agreement to
the experimental date should instead be considered as
surprisingly good.

It is further observed from Fig. 9, that after a craze has
been initiated, an almost linear behaviour is predicted over a
long time range (more than two decades)! This corresponds
exactly with the experimentally observed behaviour from
which the logarithmic growth rate law of Eq. (1) was
concluded. It should be noted that the almost linear beha-
viour is obviously a consequence of opposing trends of
decreasing craze growth (as demonstrated in Fig. 8) and a
“compression” of the right part of the curve due to the
choice of a logarithmic time axis, rather than the result of
a logarithmic physical time dependent damage process in
the material. The predicted curves in Fig. 9 are extended to a
much longer time than available for the experimental data.
The predictions indicate that the experimental trends may be
expected to remain similar during much longer times than
investigated. Only a slight increase in the logarithmic craze
growth rateb with time is predicted beyond the experimen-
tal range. The crazes remain stable as long as the relevant
conditions remain similar, in other words, as long as the
fibrils remain intact.

The difference in the experimental results obtained for
two growing crazes in the same material and loaded at the
same stress, can obviously be explained by a difference in
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Fig. 9. Predicted craze growth as a function of time, together with the
experimental results of Wales (1980, broken lines), forS� 32.3 MPa.

Fig. 10. Predicted craze growth as a function of time, together with the
experimental results of Wales (1980), forS� 42 MPa.



the initial defect size for the two crazes. This is shown in
Fig. 11, for both crazes of Fig. 9, and for a smaller one, but
now, all three with the same initiation time. Obviously, the
size of the initial defect remains important during the entire
craze growth life. Moreover, the “predicted” logarithmic
growth rate law results in ab being about proportional to
the size of the defect for the three crazes. In Fig. 9,b was
about the same for the different defect sizes, similar to the
experimental observation. The explanation is that on a loga-
rithmic scale,b is influenced by the initiation time, which
on its turn will be influenced by the defect size. Conse-
quently, the experimentally observed trend of a constantb
for different crazes loaded under the same stress should be
considered as more or less coincidental, in view of the
different consequences of initial defect size on craze initia-
tion and growth on the one hand, and the pure presentation
effect of the choice of a logarithmic time scale on the other
hand. Moreover, a physical process referring to a constantb
was not at all adopted in the equations. Consequently, the
logarithmic growth rate law must be considered to be a kind
of mathematical coincidence. Considering the fact that the
“linearity” of the growth behaviour is a mathematical coin-
cidence, it is interesting to vary some other model para-
meters and observe the ensuing differences in behaviour.

Fig. 12 shows the predicted effect of a change in craze
initiation sensitivity, modelled by varying the parameterD

in a systematic way. The effect is only visible at the begin-
ning of the curves. The curves coincide at large time values.
This is again an effect of the logarithmic horizontal axis, and
of the fact that the craze growth life is much longer than the
initiation life. Apparently,b (as it would be approximated
from an experimental programme, covering only the first
time decades of craze growth) is larger for long initiation
lives. However, as discussed before, the craze growth rate is
not really affected. Consequently, the largerb is a mislead-
ing result of later initiation and larger “compression” at the
right-hand part of the logarithmic time axis.

The effects of a variation of the model parametersC andn
and of the applied external stressS are shown in Figs.
13–15, respectively.

Fig. 13 demonstrates the effect of a variation ofC. A 16-
fold increase ofC, causes a factor two larger predicted craze
length in the beginning of the curve, and about 50% increase
of the craze length at the right part of the curve at long times.
Obviously, the predicted craze length is hardly influenced
by C. However, a factor of about 16 is found again if the
time difference is observed at the same craze length.

Fig. 14 shows the effect of the exponentn, again the effect
is limited, especially in the first (left-hand) part of the
curves. The moderate effect ofC and n, observed, gives
(at last) an additional indication as to why the crude way
of estimating them (adopting PMMA data) still allows for
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Fig. 11. Predicted effect of the size of the initial defect.

Fig. 12. The theoretical effect of sensitivity to craze initiation.

Fig. 13. The theoretical effect of the craze growth material constantC.

Fig. 14. The theoretical effect of the craze growth material constantn.



the acceptable prediction result as demonstrated in Fig. 9.
Obviously, the character of the equations, together with the
traditional choice of a logarithmic time axis, makes the
result rather insensitive to variations of material constants.

Fig. 15 shows seemingly strange behaviour. The slope of
the curves increases with a decreasing stress. In other words,
a decreasing stress is related to an increasing logarithmic
craze growth rateb ! Consequently, a first impression may
be that crazes grow faster for lower stresses. However, this
is not the case. It is again the consequence of the distortion
by the logarithmic time axis and the fact that craze initiation
is more sensitive to the stress level than craze growth,
becausem. n, (m� 11, and n� 2.5). The shift to the
right-hand side on the logarithmic axis is larger for the
lower part of the curves than for the upper part. Discussions
with Struik [44] revealed that unpublished experimental
data, obtained by TNO in The Netherlands, indeed show
an increasingb with a decreasing stress. The present results
show that it is useless to try to explain the apparent faster
craze growth rate (largerb ) at lower stresses. It is simply
just not faster, but only looks faster due to the chosen loga-
rithmic time axis.

5. Discussion and conclusions

It was demonstrated in the previous chapters that a craze
may be considered as a crack, loaded by an external stress
and by fibril stresses applied on the crack flanks. This allows
the use of fracture mechanics. Both stress systems together
result in a stress intensity factor which can be used to obtain
the craze growth rate. Constitutive equations translating a
stress intensity factor to a crack growth rate were not found
for PVC (for which experimental craze growth data are
available). Therefore PMMA data were used, arguing that
PVC and PMMA are similar enough to make PMMA data
acceptable. A plausible value for the size of the initial defect
was adopted. Fracture mechanics on crazes has been used
earlier [9]. Although, always in a Dugdale type of approach.
This means that it has been argued that the stress intensity
factor at a craze tip, including (all) non-linearities, is always

zero, because nature does not show singularities. Then all
non-linearity is attributed to the fibril bridging mechanism
and the stress intensity factor has been taken to be zero,
allowing the calculation of the fibril stresses or bridging
distance. Usually the 2-D Eq. (2) or a simplification of it
has been used withK� 0 for this type of approach. The
difference with the present approach is clear: the bridging
distance and the average bridging stress are determined at
the beginning and the stress intensity factor is subsequently
calculated. The stress intensity factor determines the plastic
zone size at the crack tip. In a more general analysis, the
stress intensity factor determines the size of the zone in
which with various types of non-linear physical processes
occur. However, for the present model, crazing is not
included in these processes, because it is explicitly taken
into account. That leaves true plasticity and viscous
processes as processes occurring in the “plastic zone”
related to the stress intensity factor resulting from the
present model. For small scale yielding conditions, where
the use of a stress intensity factor is valid, the processes will
be directly related to that plastic zone size, and consequently
to the stress intensity factor. Such processes will be related
to the growth behaviour of the craze, which is consequently
related to the stress intensity factor. Moreover, a 3-D Eq. (3)
is applied in the present model. This equation is more accu-
rate for the real craze geometry, although the small effect of
the free edge on the stress intensity factor of surface crazes
is still neglected. Summarising, it can be stated that the
“switch” from the often applied Dugdale approach to the
present explicit calculation of the stress intensity factor is
useful indeed. This is also confirmed by the observation that
the craze growth model results agree reasonably well with
the experimental results described by Wales.

Wales performed most of his experiments in the presence
of benzene vapour. Benzene influences the material beha-
viour significantly. The present model could be adapted to
the modified material by finding the appropriate values
(especiallyC andn) for the altered material constants, and
including the effects of a gradient of the benzene content
(decreasing away from the surface). This will not be pursued
here. The presently available information is unfortunately
insufficient for PVC containing benzene. Consequently, a
confrontation of the present model with experimental results
could only be performed for the few data for crazes growing
in air. Nevertheless, a good agreement with those data is
observed.

The present model allows to indicate possible ways for
improving the crazing resistance of polymers. An obvious
way would be to improve the crack growth resistance of the
polymer, e.g. by developing materials with small values of
the constantC. Large improvements will be necessary to
obtain a significant shift to the right on the logarithmic time
axis. An improvement of the craze initiation behaviour (e.g.
an increase inD) is almost useless. The initiation time is too
short as compared with the time spent during the growth of
the craze. A very effective way to improve the material is to
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Fig. 15. The theoretical effect of a variation of the external stressS.



reduce the size of the initial defect, by the production of
clean polymers. Figs. 9 and 11 show a significant reduction
of the craze length, during the entire loading time, obtained
with only a moderate reduction of the size of the initial
defect.

Of course the most important condition is the situation
adopted here from experience. It is the fact that for natural
craze growth in PVC, all fibrils stay intact during craze
growth. Fibril fracture will instantaneously cause a signifi-
cantly increased stress intensity factor (as if the initial defect
size were larger) and consequently the craze growth rate
will also increase considerably. Polymers for which the
craze fibrils are strong and durable are highly preferred,
because while fibrils remain intact, a continuing decelera-
tion of the craze growth rate (on a linear scale) will occur.
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